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Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged
into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs be-
tween cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a
macro-scale in human.Wedeveloped here a newmethod aiming atmapping the dynamical properties of cortical
microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and elec-
troencephalography.We recorded the responses evoked by the stimulation of 18 cortical targets largely covering
the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the
local source activity of each cortical target, which showed inter-regional differences with very good interhemi-
spheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-
temporal decomposition of local source activities in order to highlight principal brain modes. The identified
brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either
locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results pro-
vide the proof of concept of “functional cytoarchitectonics”, that would guide the parcellation of the human cor-
tex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new
avenues for brain modelling and physiopathology readouts.
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Introduction

Brain dynamics at rest depend on the large-scale interactions be-
tween local oscillators that correspond to cortical microcircuits arranged
into macrocolumns (Jones, 2000). Cytoarchitectonic studies have shown
that the structure of those microcircuits differs between cortical regions
(Brodmann, 1909; Economo and Koskinas, 1925), but very little is
known experimentally about interregional differences of their intrinsic
dynamics at amacro-scale. In animal studies, there are somedata relating
specific cell types or processes to specific brain oscillations, e.g. giant py-
ramidal cells to beta oscillations in the motor cortex of the cat (Bouyer
et al., 1987) or synaptic synchrony between excitatory pyramidal neu-
rons and inhibitory interneurons to gammaoscillations inmouse entorhi-
nal cortical slices (Salkoff et al., 2015). In humans, indirect evidence
between brain dynamics and cytoarchitectonics from post-hoc
urosciences, Chemin Fortuné
e.
correlation analysis of cortical maps has been suggested from analysis
of resting state functional MRI spectral properties (Song et al., 2014). A
significant association between cytoarchitectonic features of human cor-
tical organization, in particular the size of layer 3 neurons, and whole-
brain cortico-cortical connectivity has been recently identified, and sug-
gests existing relationships between microscale cytoarchitectonics and
macroscale connectomics (vandenHeuvel et al., 2015). Because knowing
how cytoarchitectonics influence brain dynamics is of outmost impor-
tance to increase our understanding of brain functioning, for example
by developing more biologically grounded neuronal models in silico
(Roy et al., 2014), we develop here a new experimental method using
transcranial magnetic stimulation (TMS) to map the dynamical proper-
ties of human local cortical microcircuits non-invasively. We mainly as-
sume that the dynamical properties of neuronal responses to direct
local perturbations depend on theway neurons are interconnectedwith-
in corticalmacrocolumns, i.e. local cytoarchitecture, andbeyond, i.e. inter-
regional laminar pattern of connections (Crick and Koch, 1998).
Operationally, we propose that spatio-temporal decoding of local re-
sponses to distributed focal brain stimulations may give rise to the
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Fig. 1. Cortical mapping procedure. a: Cortical targets used for the mapping procedure.
Entry points and coil orientations are shown in green; cortical targets are in blue.
Targets are symmetrically distributed on both hemispheres. b: Robotized sequence of
stimulations. The snapshots show the position of the robotized arm throughout the
mapping procedure of the left hemisphere, from the anterior to the posterior sites.
Snapshots are sorted into time order from top left to bottom right, except for Sham
condition performed above M1 in this example (see main text).
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possibility of studying functional cytoarchitectonics, that is the study of
intrinsic dynamics of cortical microcircuits in vivo.

TMS consists of the generation of a transient magnetic field by a coil
placed over the scalp, which induces electrical currents on the cortical
surface (Wassermann and Epstein, 2012) that activate responsive neu-
rons (Mueller et al., 2014). Originally designed in order to better under-
stand the actual effect of TMS and repetitive TMS on the ongoing neural
activity, the coupling between TMS and electroencephalography (EEG)
has recently given new insights regarding the nature and the properties
of both the local neuronal microcircuits as well as their long-range con-
nectivity (Bortoletto et al., 2015; Gosseries et al., 2015; Miniussi and
Thut, 2010). These features can be assessed by the study of TMS evoked
potentials (TEPs) (Casarotto et al., 2010; Ilmoniemi et al., 1997; Lioumis
et al., 2009). TMS–EEG coupling also allows studying local and distribut-
ed brain oscillations at rest (Rosanova et al., 2009) or during sensorimo-
tor (Fuggetta et al., 2005; Löfberg et al., 2013; Picazio et al., 2014) or
cognitive tasks (Mattavelli et al., 2013; Rogasch and Fitzgerald, 2013;
Vernet et al., 2015). TEPs were recorded over a large diversity of cortical
areas including M1, frontal, parietal, and occipital lobes. As expected
from the heterogeneity of cortical microcircuits and long-range connec-
tivity, TEPs showed distributed spatio-temporal patterns specific to
each stimulated area, in terms of both spectral and spatial signatures
(Cona et al., 2011; Rosanova et al., 2009; Thut et al., 2011). However,
existing literature suffers from the diversity of the TMS parameters
and of the EEG signal processing methods employed, which prevents
any accurate understanding of the spatial organization of local cortical
microcircuits' properties amongst cortical regions.

In this study,we fully revisited themethods required to obtain an ac-
curate mapping of dynamical properties of local microcircuits. Our
methodology was based on the coupling of EEG recordings with
neuronavigated and robotized TMS. Robotized TMSwas critical because
it allowed the automatic and precise positioning of the coil over a series
of cortical targets (Ginhoux et al., 2013), thereby making possible the
stimulation of a large number of cortical targets within a unique record-
ing session. EEG processing methods were developed to estimate the
early components of cortical current densities generating TEPs, locally
for each cortical target, leading to a local source activity (LSA)map. Fur-
ther spatial clustering on time-frequency properties of such local source
activitywasfinally used to estimate themain corticalmodes supposedly
generated by the regional differences in cytoarchitecture and local
microcircuitry.

Materials and methods

Subjects

This study was approved by the ethical committee of Grenoble Uni-
versity Hospital (ID RCB: 2013-A01734-41), and registered on
ClinicalTrials.gov (number NCT02168413). Twenty-two French native-
speaker healthy volunteers (14 males, aged 29.6 ± 10.1 years old)
gave their written consent prior to the experiment and received pay-
ment for their participation. None of them had either history of psychi-
atric or neurological disorders, or history of alcohol or substance abuse.
They were free of anymedicinal treatment likely to modulate their cor-
tical excitability levels.

Acquisition parameters

Protocol design
MRI and TMS acquisitions were performed at IRMaGeMRI and Neu-

rophysiology facilities (Grenoble, France). First, cerebral anatomical T1-
weighted MRIs were acquired at 3T (Achieva 3.0T TX, Philips,
Netherlands). The subjects were then prepared for the TMS–EEG exper-
iment (EEG cap hanging), while their MRI were being processed in
order to define the cortical targets. A co-registration step, necessary
for the neuronavigation system, was performed. The resting motor
threshold (rMT) was assessed during a classical motor CE session (see
below). Finally, one TMS–EEG mapping session per hemisphere was
performed (30 min each), separated by a 15 min break. The order of
the stimulated hemispheres was counterbalanced between subjects.
TMS parameters
Biphasic TMS pulses were delivered on a posterior to anterior direc-

tion using a Magpro Cool B65-RO butterfly coil (MagVenture A/S,
Denmark) plugged in a MagPro ×100 TMS stimulator (MagVenture A/
S, Denmark), and guided by a Localite neuronavigation system (Localite
GmbH, Germany). The coil was handled automatically using a TMS-
robot (Axilum Robotics, France). The rMT was assessed on the position
eliciting the greatest motor evoked potential (MEP) on the contralateral
first dorsal inter-osseous muscle. The MEPs were recorded using a
Dantec Keypoint portable EMG recording system (Natus Medical Inc.,
USA). Using the threshold hunting method (Awiszus, 2003), the rMT
was defined as the stimulation intensity that evoked a 50 μV MEP
with a 50% probability.

Both hemispheres were symmetrically stimulated. TMS–EEG map-
ping of a single hemisphere was performed in one session by recording
the EEG activity evoked by the successive stimulation of 9 cortical tar-
gets defined in the standard Montreal Neurological Institute referential
([±x y z] in mm). The coil followed a predefined robotized sequence of
stimulation, going from the anterior to the posterior parts of the brain
(Fig. 1): inferior frontal gyrus (IFG, [±60 24 13]), dorso lateral prefron-
tal cortex (DLPFC, [±42 42 30]), middle frontal gyrus (MFG, [±34 14
62]), anterior part of the supplementary motor area (SMA, [±6 8 72]),
primary motor cortex (M1, [±36–33 64]), superior temporal gyrus
(STG, [±67–23 10]), superior parietal lobule (SPL, [±8–62 70]), inferior
parietal lobule (IPL, [±53–52 51]), and superior occipital lobe (SOL,
[±25–87 33]). The target coordinates were projected back on each
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subject's individual anatomy using the inverse spatial transform given
by the MRI normalization procedure of SPM8 software (www.fil.ion.
ucl.ac.uk/spm8). The coil was placed on a posterior to anterior direction,
with an angle of 45° to the nasion-inion axis, except for M1 (perpendic-
ular to the primarymotor gyrus), SMA (5°), STG and SOL (perpendicular
to the axial plane). These angles were used according to themechanical
constrains introduced by robot's motion, while keeping standard coil
orientations used in the literature if possible (Janssen et al., 2015). The
sham condition consisted of stimulating 3 to 5 cm above one of the cor-
tical targets (randomly distributed between subjects) at the highest in-
tensity used within each subject (see below), in order to produce a click
soundofmaximum intensity. Each cortical targetwas stimulated during
2 min 30 s at instantaneous frequency around 0.5–0.7 Hz in a random
manner, so that no phase effect could build up as demonstrated by
others on corticospinal excitability (van de Ruit et al., 2015). This led
to an average number of 90 trials per stimulation point. The intensity
was fixed at 120% of rMT, and adjusted according to the scalp-cortex
distance measured from subject's anatomical MRI using the Stokes for-
mula (Stokes et al., 2005, 2007). During each stimulation sequence, the
subject was told to relax (resting state) and to stare at a black cross lo-
cated on the opposite wall. Subjects were also listening to white noise
through active noise cancellation intra-auricular earphones (Bose QC
20, USA) in order to limit the influence of the auditory processing of
the TMS click on the ongoing EEG activity. The sound level was adjusted
individually to each subject, until the TMS click delivered at 95% of the
stimulator output became barely audible. A thin layer of soft plastic
was placed on the coil surface in order to limit both sensory and audito-
ry feedbacks to the subject.

EEG acquisition
EEG was recorded using a 64 channels TMS compatible system

(BrainAmp DC amplifiers and BrainCap EEG cap, Brain Products
GmbH, Germany). The EEG cap was placed at the beginning of the ex-
periment following the 10–20 standard system. Electrooculogram of
the right eyewas recorded using one of the 64 electrodes. The electrode
impedances were adjusted and kept under 5 kΩ using conduction gel.
The impedance levels were checked and corrected if needed before
the two TMS–EEG sessions. The signal was recorded using the amplifier
in DC mode, filtered using a 500 Hz anti-aliasing low-pass filter, and fi-
nally digitized at 1 kHz sampling frequency. Electrode Fz was used as
reference during the recording. The channel coordinates relative to the
subject's scalp were measured at the end of the experiment using the
neuronavigation system.

EEG processing

EEG signals were processed using Fieldtrip (Oostenveld et al., 2011)
and Brainstorm 3 (Tadel et al., 2011) software, and other custom scripts
written in Matlab (The MathWorks Inc., USA).

Preprocessing
EEG signals were pre-processed semi-automatically based on the

methodology described in Rogasch et al. (2014), for each condition
(18 targets and 1 sham) and each subject. First, the channels showing
electrical noise (flat signal or peak-to-peak amplitude superior to
100 μV) spanning more than 15% of the trials were discarded from the
analysis (on average, 1.53 ± 2.08 channels per condition). EEG signals
were then epoched around the TMS pulse, using a −200 to
+1000 ms time window of interest. TMS artifacts were discarded by
cutting out the −5 to +15 ms period surrounding the TMS pulses.
Two rounds of independent component analysis (ICA) were then ap-
plied in order to remove noise remaining in the signal. The first ICA sup-
pressed the muscle artifacts, while the second aimed at removing the
decay artifact, ocular activity, auditory-evoked potentials and other
noise-related artifacts (Rogasch et al., 2014). Before the second ICA,
the signal was spline interpolated over the −5 to +15 ms period,
band-pass filtered (1–80 Hz), re-referenced using the average refer-
ence, and cleaned from bad trials (leading to a mean of 77.7 ± 7.2 trials
left per condition). The ocular components were automatically identi-
fied using a threshold of 0.7 on the correlation product ρ between the
spatial topographies of the components and a template of typical hori-
zontal eyemovements and blinks build from our own database by aver-
aging over subjects. Other artifact components (decay, auditory-evoked
potentials and other noises) were detected by thresholding the z-score
(above 4) of their mean activity against the pre-stimulus period, and by
visual inspection. On average, 19.2 (±7.7) components were removed
from the signal. Cleaned EEG time series were reconstructed using the
remaining components and any isolated channel still showing remain-
ing noise was discarded from further analysis. Time series of rejected
channels were finally inferred using the activity averaged over their
neighboring channels.

TMS evoked potentials (TEPs)
TEPs were computed for each condition and subject by averaging

over trials, using a baseline normalization (z-scoring) over the −200
to−5ms period. The grand average TEPwas obtained for each TMS tar-
get by averaging across subjects.

TEP source reconstruction
TEP source reconstructionwas performed following the default pro-

cedure proposed in Brainstorm 3 software (Tadel et al., 2011). First, the
cortex and head meshes (15,000 and 10,000 vertices respectively) of
each individual were generated using the automatedMRI segmentation
routine of FreeSurfer (Reuter et al., 2012). The locations of EEG elec-
trodes were co-registered on each subject's anatomical MRI. The for-
ward model was then computed using the symmetric Boundary
Element Method developed in the openMEEG freeware, using default
values for conductivity and layer thickness (Gramfort et al., 2010). The
full noise covariance matrix was then computed for each subject using
the temporal concatenation of the baseline periods of all conditions.
Sources were distributed orthogonally to the cortical surface and their
amplitudes were estimated using the default values of the Brainstorm
implementation of the whitened and depth-weighted linear L2-
minimum norm solution. The source amplitudes were finally normal-
ized (z-score against pre-stimulation baseline).

Local source activity map
The LSA map was constructed in order to represent the cortical re-

sponse to TMS within the region of interest (ROI) centred on each tar-
get, for all the 18 stimulated sites simultaneously (Fig. 2). ROIs were
created on each individual anatomy using a mean spatial extent of
10 cm2, covering about 50–60 vertices of corticalmesh. The LSA time se-
ries of ROI i and subject k, Sik, was obtained by extracting the first mode
of the principal component analysis decomposition of the source time
series evoked by the stimulation of the corresponding stimulation target
over all the vertices within ROI i. This corresponds to a single LSA time
series per ROI. For display purposes, the LSA map was created by
projecting back the group average (grand average of absolute values)
of LSA time series of each ROI on a canonical brain (using Colin27 tem-
plate). LSA values were interpolated in between ROIs using the
Shepard's weighting of 3D nearest-neighbor interpolation in order to
assign a LSA value to every node of the cortical mesh.

LSA mode analysis
In order to attempt to connect LSA responses to underlying

cytoarchitectonic properties through the identification of brain modes,
we proceeded to a group ICA analysis.We assumed here that the neuro-
nal populationsparticipating to the samemodes show the samedynam-
ical signatures because of shared cytoarchitectonics. The group ICA was
performed on the LSA time series Sik of each ROI i and subject k on the
TEP period of interest (from −50 to +400 ms). Here, we assumed no
interhemispheric differences, and thus considered the left and right
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Fig. 2.Generation of the LSAmap. Sources of TEPs to each stimulated region (red cross) are first estimated. Local cortical responses (LSA time series Sik) are then inferred from source time
series averaged from ROIs centered on each cortical target (black circles). The LSA map is finally generated using spatial interpolation of the group average (grand average of absolute
values) of LSA time series.
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LSA responses as a repeatedmeasurement of the same process. The LSA
group (over subjects and hemispheres) ICA was performed after the
concatenation of LSA matrices along the temporal dimension (Calhoun
et al., 2009), leading to a group LSA matrix M, where Mi = [Si1… Si

k …

Si
K]. M is of size [L/2 2NK], where L is the number of targets (18), N the
number of time bins and K the number of subjects (22). The matrix M
was thus decomposed into L/2 (9) independent components (data di-
mension) using the logistic infomax ICA algorithm (Bell and
Sejnowski, 1995)with the natural gradient feature fromAmari, Cichocki
& Yang (Makeig et al., 1996). The dynamical signature of each compo-
nent in each individual was finally assessed by means of its time/fre-
quency (TF) decomposition obtained using Morlet wavelet transform
between 9 and 50Hz (windowwidth of 7 cycles, 0.5 Hz bandwidth). In-
dividual TF maps were normalized (z-score against baseline) and aver-
aged across subjects. The output of the LSA mode analysis results are
maps showing ROIs sharing common neuronal signatures, as exempli-
fied by their time frequency decomposition.

Statistics

Significant spatial differences in the LSAmap across stimulated areas
were assessed over time using the Skillings–Mack test (Chatfield and
Mander, 2009). This test is derived from the Friedman test (non-para-
metric equivalent of the repeated measures ANOVA test) and can han-
dle missing data. Because the same test was run at every time sample,
p-valueswere temporally corrected: differenceswere considered as sig-
nificant at p b 0.05 for at least 20 consecutive time bins (Blair and
Karniski, 1993; Carota et al., 2010). The between subjects variability
and the reproducibility of the LSAmapwas estimated over timeby com-
puting Spearman correlations between the LSA map obtained with all
the 22 subjects, and LSA maps obtained with random subsets of sub-
jects. 100 maps were computed for each time sample and each random
subsets containing from 5 to 20 subjects. Statistical dependences be-
tween LSA and other experimental values were computed using Spear-
man correlations. Statistical significance of TF maps of ICA components
was obtained using paired comparisons against baseline. A non-
parametric Wilcoxon test was performed per time-frequency bin, and
the resulting p-values were spatio-temporally corrected. Differences
were considered as significant at p b 0.05 for at least 20 consecutive
time bins and 3 adjacent frequencies (tiles of 20 ms × 1.5 Hz).

Results

Most of the subjects went through the entire mapping procedure
without any major issue at an intensity of 120% of rMT. However,
three subjects reported painful sensations during the stimulation of
IFG and STG. Stimulation intensity was then lowered down (minimum
of 105% of rMT) for those three subjects when targeting IFG and STG.
The TMS pulses still remained painful for one subject thus the experi-
ment was stopped. In addition, one subject experienced drowsiness
during the stimulation of some targets, which made the corresponding
data not useable. In summary, we did not process the data of these four
subjects for left IFG, of two subjects for left and right STG, and of one
subject for left and right IPL, left and right SOL, right IFG, right DLPFC,
right SMA, and right M1.

TMS evoked potentials

Fig. 3 summarizes the different preprocessing steps used to estimate
the TEPs. Fig. 4 shows grand-average TEPs for the stimulation of the left
hemisphere, the TEPs corresponding to the right hemisphere being very
similar thoughmirrored along the interhemispheric axis. The sham con-
dition did not show any significant activity, which suggests that the re-
sponses observed for real stimulations were not due to confounding
auditory responses to TMS clicks. The earliest components (b60 ms)
were rather focal under the target, indicating the activation of local neu-
ronal populations. The largest activity within this period was generated
by the stimulation of M1 (P30 component). In opposite, IPL was the
least activated area, showing no activity pattern above baseline level.
Larger amplitude responses could be observed after 60ms for each con-
dition, peaking around 100, 200 and 280 ms. Whereas the 100 and
280 ms components were essentially generated after the stimulation
of MFG and parieto-occipital areas, and of IFG, DLPFC and STG respec-
tively, the 200 ms central component could be observed in nearly all
the conditions. Although being potentially contaminated with auditory
or somatosensory confounds (see Discussion section), these late



Fig. 3. EEG preprocessing steps of the procedure proposed in (Rogasch et al., 2014). Signals are displayed using a butterfly view for all channels and for all left stimulation sites. Raw (red)
and cleaned (blue) data come from a typical subject. Grand average TEPs (black) correspond to the average of TEPs across subjects. Note that the amplitude scale is varying between the
two first columns to optimize the display.
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components could reveal the level of efferent connectivity of each stim-
ulated area. In particular, the stimulation of the DLPFC, IFG and STG,
which are three cortical areas highly involved in inhibitory circuits
and language processing respectively, generated the largest and longest
activity (up to 340 ms). In contrast, M1 stimulation led to the smallest
late response, possibly due to the lesser proportion of cortico-cortical
efferents.

Local source activity

Fig. 5 shows the group average of LSA time series, i.e. the local cortical
response to TMSwithin all stimulated areas. Inmost ROIs, LSAwent back
to baseline after 250 ms and reached its maximum amplitude in the
earliest components (Fig. 5A). Each ROI had its own temporal pattern of
response to TMS that differed significantly from sham condition. The
local response differed significantly across the 18 sites within all the peri-
od of interest [−50, 400 ms], except for 3 periods ranging from 49 to
53 ms, from 104 to 121 ms, and from 164 to 174 ms. Besides, the LSA
map appeared to be symmetric during all the analysis window (Fig. 5B),
as no significant difference between right and left hemispheres activation
levels could be found. The only significant asymmetry could be observed
in SOL around 70 ms. M1 and SOL were the two first areas to respond at
30ms, followed by SMAandMFG at 45 and 70ms, the frontal and tempo-
ral areas (IFG, DLPFC, and STG) being activated later. The IPLwas the least
activated area throughout all the period of interest. Finally, the LSA map
appeared to be highly reproducible within all the period of interest for



Fig. 4. Grand-average TEPs for the stimulation of the left hemisphere. The grey insert emphasizes the earliest components. The z-score color bar limits are −3 to +3 within this period.
Topographies were obtained by averaging TEPs within a 40 ms time window (10 ms in grey insert). Red crosses on the left column indicate the stimulation sites.
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groups of at least 18 subjects (ρ=0.90 ±0.04), while a good correlation
score (ρ=0.75±0.08) can still be achieved for groups of at least 12 sub-
jects. The reproducibility however varied across time bins, two of the
three non-significant periods (from 104 to 121 ms, and from 164 to
174 ms) being also the most variable and least reproducible periods
(ρ = 0.77 ±0.12 and ρ = 0.55 ±0.18 for group of 18 and 12 subjects
respectively).

A group ICA on LSA time series was performed in order to detect cor-
tical regions sharing common neuronal signatures, i.e. cortical modes
(Fig. 6). The temporal signature of each component was decomposed
in the time-frequency domain using a wavelet transform in order to in-
dicate their main frequencies. Interestingly, we could identify networks
composed of several cortical areas for the majority of the components.
Different fronto-parietal networks composed the components #3, 8
and 9, while a temporo-parietal cluster was found in component #1.
The other components showed other networks mainly weighted by
one area (component #2: DLPFC; component #4: IFG; component #5:
M1; component #6: SOL), and component #7 was only composed of
the SPL. Each component had a specific dynamical signature, showing
a mixture of responses in the low and high frequency bands. The most
powerful and sustained alpha rhythm activation was found in compo-
nent #6 involving the occipital lobe (9–12 Hz, from 50 to 500 ms after
stimulation onset). Alpha oscillations were also prominent in compo-
nents #1, 2, 8 and 9, all involving occipital or parietal areas in various
proportions. Networks composed of motor areas (M1 and SMA)
presented beta oscillations between 15 and 30Hz at the 100–250ms la-
tency (components #3, 5 and 8). Finally, low gamma oscillations (30–
50Hz) could be found around 100ms after stimulation onset on several
components (#1, 2, 6–9). The highest frequencies were found in com-
ponents #2 and 9, mainly representing frontal areas (DLPFC and MFG
respectively).
Discussion

Wedeveloped here thefirst attempt to broadlymap the intrinsic dy-
namical properties of human cortical microcircuits. Our results are
promising because homologous regions shared common properties
and distinct neurodynamical responses were obtained in different re-
gions, in particular along the anterior–posterior axis regarding high
EEG frequencies. Under the assumption that impulse responses of
local microcircuits are a proxy of their underlying cytoarchitecture, we
suggest that our study paves the way to functional cytoarchitectonics,
where one could envisage to proceed to the functional parcellation of
the human brain using active probing of intrinsic cortical dynamics.
Though our approach still suffers from technical limitations discussed
below, and will remain limited in healthy subjects to the superficial ce-
rebral cortex, it complements current approaches based on structural
and resting state functionalMRI because of its different neurodynamical
content.

Limitations of the study

Nowadays, there is still a lack of fully data-driven and automatic
pipelines for processing EEG data recorded during TMS. In this study,
we used one of the latest methodology described in the literature.
Rogasch et al. (2014) recommended the use of two rounds of ICA in
order to filter out artifactual signals. Even if we developed some func-
tions for automatically choosing the components to be rejected, there
is still a need for a visual inspection of each of the remaining compo-
nents. This step has to be eliminated in the future because it is time-
consuming and introduces expert-dependent variability.

Auditory and somatosensory evoked potentials due to the sensory
feedback of the scalp muscle contractions might also have partly



Fig. 5. Group average of LSA time series. a: Group average (grand average of absolute values) of LSA time series for each region of interest. Colored areas represent the 95% confidence
intervals. The grey bar indicates the −5 to +15 ms interpolation period due to the TMS artefact. b: LSA map generated for the 5 time periods presenting the highest overall activity.

Fig. 6. LSAmodes identified from the components of a group ICA. Componentswere sorted by the amount of explained variance indescending order. Their topography is shown on the left,
and their time-frequency profile on the right. Frequency bands corresponding to local maxima of power are indicated on the y axis.
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influenced the recorded EEG activity. In principle, the TEP component at
200 ms could reflect the presence of such unwanted responses, regard-
ing its overall latency and topography (Rogasch et al., 2014). However,
several strong arguments are in favor of their minimized influence.
First, from results not shown in this report, we did not find any correla-
tion between the intensity of stimulation, which is directly linked to the
power of both the click sound and the induced muscle twitch, and the
amplitude of this component, which should be large in case of purely
auditory or sensorimotor artifacts (Hegerl and Juckel, 1993). Second,
this component has already been found and discussed in numerous
studies in TMS–EEG (Braack et al., 2015; Chung et al., 2015). It has
been shown to reflect a consistent aftereffect of the stimulation rather
than a pure auditory or somatosensory artifact. Finally, such compo-
nents have also been found in intracranial cortico-cortical evoked po-
tentials after direct electrical stimulation of various areas (Keller et al.,
2014). They could thus mainly reflect the activation of remote cortical
and sub-cortical areas connected to the stimulation site.

A final limitation of our work lies in thewaywe defined the ROIs, i.e.
simply by considering the regions around the targets used by the
neuronavigation system. New optimized methods for modelling the
electrical field induced by TMS (Thielscher et al., 2011) could be used
in the future to define ROIs in a more accurate way according to excita-
tion threshold. Furthermore, accurate biophysical modelling could also
improve the tuning of stimulation intensity across sites that would
then be based not only on scalp-cortex distances (Stokes et al., 2005,
2007) but also on the actual individual anatomy.

Functional cytoarchitectonics

The mode analysis of LSA time series identified networks sharing in-
trinsic dynamical signatures in response to TMS single pulses: parietal–
temporal, parietal-occipital, frontal, or motor. Parietal-occipital networks
showed a resonant frequency in the alpha band, whereas the motor cor-
texmainly oscillated in the beta band. In healthy conditions, ourmethod-
ology could be further developed as a functional cytoarchitectonic
approach, that is a newnon-invasiveway to parcel the human superficial
cerebral cortex on the basis of the dynamics of its local neuronal circuits'
response. Parcellation of the cortex has a long history in neuroscience
(Zilles and Amunts, 2010). The search for precise anatomical boundaries
from local cytoarchitectural, myeloarchitectural, or receptoarchitectural
features, is motivated by the assumption that structure determines func-
tion, which is essentially verified for primary areas (Cloutman and
Lambon Ralph, 2012). For higher cognitive functions, computational neu-
roanatomy also relies upon the definition of hierarchies based on inter-
laminar patterns of long range connections to define distributed cortical
hierarchies (Cloutman and Lambon Ralph, 2012; Crick and Koch, 1998;
Hilgetag and Grant, 2010). Using neural mass models, it can be shown
evoked EEG responses within cortical hierarchies directly depend upon
the laminar pattern of connectivity (David et al., 2005). Inferences on in-
trinsic neuronal dynamics can thus be used to go beyond pure structural
parcellation towards an anatomo-functional one, the main assumption
being that neural communication is facilitated between neuronal popula-
tions showing similar resonant frequencies, ormodes (Fries, 2005). Now-
adays, non-invasive functional parcellation methods essentially rely on
MRI techniques, such as resting-state functional MRI (Song et al., 2014;
Yeo et al., 2011) and diffusion MRI tractography (Cloutman and
Lambon Ralph, 2012; Tang et al., 2014). Thesemethods are able to parcel
a defined brain area in respect to a connectivity score, using both func-
tional and/or anatomical connectivity. However, there is only few similar
approaches based on electrophysiological recordings, although it has
beenproved that someof its characteristics are stronglymodulated by to-
pological and cytoarchitectural features, including the density of pyrami-
dal cells (Fernández-Ruiz et al., 2013; Kajikawa and Schroeder, 2011;
Murakami and Okada, 2006). Several studies using direct cortical electri-
cal stimulation also showed that the properties of the neuronal responses
depend a lot on the intrinsic cytoarchitecture or connectivity patterns of
the stimulated area, in both animals (Luppino et al., 1991) and humans
(Keller et al., 2014).

We propose that combining TMS and EEG can be used to develop
functional cytoarchitectonics with the ultimate goal to parcel the
human brain on the basis of distributed neuronal populations sharing
common dynamical properties of their impulse response. TEP may in-
deed contain sufficient information tomake inferences on local anatom-
ical differences, because different interconnections and proportions of
pyramidal cells, inhibitory and excitatory interneurons, automatically
lead to differences in the macroscopic electrophysiogical responses to
local electrical currents. For example, our results support the fact that
the primary motor cortex has a very specific anatomical organization,
which reacts in a unique manner to the stimulation, potentially due to
the absence of cortical layer IV and to the presence of the large
cortico-spinal pyramidal neurons. Furthermore, the pyramidal neurons
of layer V are particularly large in the motor/premotor areas and in the
median part of the occipital lobe (van den Heuvel et al., 2015), where
we also observed the greatest early LSA (from 15 to 45 ms, see
Fig. 4b). Another interesting example is to note that dynamical proper-
ties of LSA were shared between the superior occipital lobe and the pa-
rietal lobe, or between the parietal lobe and the frontal lobe. It suggests
the presence of distributed and overlapping functional networks reso-
nating in different modes. However, the spatial resolution of our data
is rather coarse because of the limited number of cortical targets and
of EEG electrodes. Further studies are needed to go beyond our results,
and in particular to challenge the spatial precision of the segregation
that could achieve such amethod based on a noninvasive neurophysio-
logical approach.Moreover, the direct relation between our parcellation
results and human cytoarchitectonics features is yet to be established,
by correlating our data with extensive cytoarchitectonic databases.

Despite the limited spatial precision, the networks emerging from
our study highly correlate with the resting state network (RSN) already
described from low frequency signal fluctuations in fMRI (Song et al.,
2014; Yeo et al., 2011) and more recently from phase-amplitude cou-
pling synchronization between low (theta - alpha) and high (gamma)
frequencies in magnetoencephalography (Florin and Baillet, 2015).
Both techniques revealed that the spontaneous brain activity can be
segregated into different RSN, ranging from local sensory-motor net-
works to large scale ones involving associated areas. These findings cor-
relate with our results, regarding the spatial clusterization of LSA. Here
using an active probing approach, we further showed that those net-
works share some common intrinsic frequency signatures, mainly com-
posed of alpha and low gamma bands. Since RSN segregation in
magnetoencephalography is based on phase-amplitude coupling be-
tween alpha and high gamma bands (Florin and Baillet, 2015), our
new approach has the potential tomap precisely the spectral properties
of cortical areas supporting cross-frequency communication for large-
scale neural communication.

Potential applications

The analysis of LSA modes and their related oscillatory contents can
be turned into the identification of biomarkers of the integrity of cortical
networks. A recent study supports this idea, by showing that the reso-
nant frequency of the premotor area could be modified in several psy-
chiatric diseases, like major depressive disorders or schizophrenia
(Canali et al., 2015; Ferrarelli et al., 2012). EEG responses to TMS are
also mental state dependent, as recently reported by a study showing
that the resonant frequency of the occipital areawasmodulated by visu-
al attention (Herring et al., 2015). Investigating mental state influence
on LSA modes could give new insights regarding the variance of TMS
(and repetitive TMS) aftereffects across subjects (Beynel et al., 2014).
Other applications are the monitoring of stroke patient rehabilitation,
since LSA directly reflects the integrity of cortical networks, or the dif-
ferential diagnosis between vegetative and minimally conscious states.
It has been shown that some of the characteristics of TEPs over the
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primary motor cortex, the superior frontal and parietal gyrus contain
crucial information for the diagnosis of disorders of consciousness
(Casali et al., 2013; Ragazzoni et al., 2013; Rosanova et al., 2012). Ex-
tending these findings towards the whole cortex could be valuable. Fi-
nally, the potential ability of this methodology in studying resting
state networks could give new insights regarding its modulation by
neurodegenerative diseases (Baggio et al., 2015; Spetsieris et al., 2015).

Overall, identifying intrinsic dynamical properties of cortical micro-
circuits opens many avenues for modelling both segregation and inte-
gration of neural information, with many potential applications in
brain physiology and pathophysiology.
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