Robotic transcranial magnetic stimulation mapping of the motor cortex in the intact developing brain

Grab JG, Zewdie E, Kuo HC, Giuffre A, Carlson H, Kirton A

Calgary Pediatric Stroke Program, Alberta Children's Hospital; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB; Department of Pediatrics, University of Calgary, Calgary, AB; Department of Neurosciences, University of Calgary, Calgary, AB

ROBOTIC TMS INTRODUCTION

- Wilder Penfield first described the motor and sensory homunculus in 1950 that showcased the \bullet topographic arrangement of muscle representations of the human cortex
- New robot transcranial magnetic stimulation (TMS) technology has been developed to non- \bullet invasively assess functional cortical topography in vivo (Axilum robotics, Strasbourg, France)
- The robot corrects for potential head movement in 3-dimensional space to enhance precision \bullet and reproducibility of procedures by eliminating human error – the robot arm features 7 moving joints for improved accuracy
- Here, a study using robotic TMS is undertaken to understand the primary motor cortical M1 representations in healthy pediatric participants

OBJECTIVES

Primary Aim: Determine the feasibility of robotic TMS in a pediatric population and characterize the cortical motor maps in typically developing children

Additional aims:

Localize the mean coordinate of maximal activation (hotspot) and centre of gravity (CoG) Quantify typical cortical motor map area and volume

METHODS

RESULTS

Mean TMS Coordinate Localizations of the FDI Muscle Warped to MNI Space

		X	Υ	Z
Left Hemisphere	Hotspot	-37	-12	58
(n=8)	Centre of Gravity	-35	-16	61
Right Hemisphere	Hotspot	43	-15	57
(n=8)	Centre of Gravity	43	-15	58

FDI

APB

 \bullet

- A: TMS trajectories are pre-defined at coordinate sites on the MRI reconstruction
- **B:** The MEP peak-to-peak amplitude is used in motor map thresholding and quantification
- : MEPs recorded at each coordinate are plotted to generate the cortical motor map
- **D:** Perspective view showcasing MEP amplitude at coordinate locations

METHODS

D

Patient Enrollment Functional Motor Assessment Functional Imaging of the Brain **MRI Processing for Robot TMS** $\overline{\mathbf{y}}$ **Patient Arrival and Registration** with the Robot $\overline{\mathbf{y}}$ **TMS Threshold Determination** \checkmark **Motor Map Derivation**

• Surface EMG simultaneously recorded 4 distal forelimb muscles bilaterally, including: first dorsal interosseous (FDI) abductor pollicis brevis (APB) abductor digiti minimi (ADM) abductor pollicis longus (APL)

Top: Mean TMS coordinate localizations of the FDI muscle and representative anatomical MRI reconstructions with derived cortical motor map representations of left and right hemisphere FDI muscles. **Bottom Left:** Same representative participant's four left hemisphere motor map representations with the hotspot and CoG plotted (MEP amplitude in μ V).

Bottom Right: Quantification of cortical motor map area (mm²) and volume (mm²·μV) of the right (n=9) and left (n=10) hemisphere (red lines indicate means).

No significant correlation between functional motor assessment score on the Perdue Pegboard Test and map area or volume for both hemispheres.

Demographics	Healthy Participants	
Recruited Participants	12 (4F)	
Excluded Participants	2 (OF, age 8)	
Mean Age	14.3 ± 1.0	

- The site generating an MEP of maximal amplitude $\geq 50 \ \mu V$ on $\geq 5 / 10$ single pulses was used to find the resting motor threshold (RMT)
- Motor mapping involved delivering 4, 1 Hz single pulses at 120% RMT at each site
- A responsive site was defined as a site generating an MEP \geq 50 μ V on \geq 2 /4 pulses
- Motor map bordering consisted of surrounding the hotspot and all responsive sites entirely by non-responsive sites
- The CoG is an MEP amplitude weighted mean coordinate position of the map, calculated as follows:

SIGNIFICANCE

- High resolution cortical motor maps can be generated in pediatric participants using robotic TMS
- Localization of the primary motor cortex in individual children will enable personalized precision \bullet targeting for neuromodulation
- Motor map quantification in children with brain injury will better inform clinicians of plastic reorganization and regions of altered excitability

FUTURE DIRECTIONS

- Robotic TMS motor maps will be co-registered with fMRI-derived activation maps to understand the spatial congruency between modalities
- Robotic TMS motor maps will be used as an outcome measure for motor neuromodulation interventions in both normal and hemiparetic children

